Journal of Organometallic Chemistry, 202 (1980) C93–C94 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

¹¹⁹Sn CHEMICAL SHIFTS IN SEVEN-COORDINATE ORGANOTIN COMPOUNDS

JUNZO OTERA^{*}, TOMOYA HINOISHI, and ROKURO OKAWARA Okayama University of Science, Ridai-cho, Okayama 700 (Japan) (Received September 30th, 1980)

Summary

The FT NMR studies revealed that ¹¹⁹Sn chemical shifts in seven-coordinate organotin compounds are more than 100 ppm upfield from those in six-coordinate analogues.

One of the most notable features of ¹¹⁹Sn NMR spectroscopy is the dependence of ¹¹⁹Sn chemical shifts (δ (¹¹⁹Sn)) on the coordination number of tin; that is, δ (¹¹⁹Sn) moves upfield with increasing coordination number from four to five and six [1]. Although seven coordination in organotin compounds has been the subject of considerable interest in recent years [2], few studies have been made on ¹¹⁹Sn NMR spectra of these compounds. As a part of our studies of ¹¹⁹Sn NMR spectra, we investigated the δ (¹¹⁹Sn) values in some seven-coordinate organotin compounds in the hope of obtaining further insight into the relation between δ (¹¹⁹Sn) and the coordination number.

The ¹¹⁹Sn FT NMR spectra with complete proton noise decoupling were measured using a Jeol FX-100 spectrometer operating at 37.08 MHz at 22°C. Field-frequency control was made with an external D₂O lock. The chemical shifts were determined relative to external tetramethyltin ($\delta = 0$) and were found to be accurate to ± 1 ppm by repeated measurements. The results are summarized in Table 1, in which the δ (¹¹⁹Sn) values in six-coordinate analogues are also given in order to show the effect of seven coordination.

Compounds I [3], III [4] and IV [5] have already been reported to maintain the seven coordination in solution. Compound II [6] is not soluble in common organic solvents except for DMF, in which this compound was confirmed to have virtually seven-coordinate tin, since the value of ${}^{2}J(CH_{3}-{}^{119}Sn)$ (114.0 Hz) is close to that of I (115.8 Hz)[3].

Apparently the $\delta(^{119}Sn)$ values in seven-coordinate compounds except II are more than 100 ppm upfield from those in six-coordinate analogues. The low $\delta(^{119}Sn)$ value for II might be due to a slight dissociation of ligands in a polar medium such as DMF. A slight ionic dissociation of II in this solvent was also

0022-328X/80/0000-0000/\$ 02.25, © 1980, Elsevier Sequoia S.A.

TABLE 1

Seven-coordinate			Six-coordinate		
Compound	Solvent	δ(¹¹⁹ Sn) (ppm)	Compound	Solvent	δ(¹¹⁹ Sn) (ppm)
$(CH_3)_2Sn(pan)(acac)$ (I)	30% CHCl3	463	$(CH_3)_2Sn(acac)_2$	10% CHCl3	-365(366 [1])
$(CH_3)_2 Sn(NCS)_2(TPy)$ (II)	20% DMF	-409	$(CH_3)_2Sn(NCS)_2(DPy)$	20% DMF	-363
BuSn(Ox) ₃ (111)	10% CHCl ₃	-561	BuSn(OEt) ₃ BuSn(Ox) ₂ Cl	48% C ₆ H ₆ sat. CHCl ₃	(—432[7]) (—395[7])
PhSn(dtc) ₃ (IV)	5% CHCl ₃	695	PhSn(dtc) ₂ Cl	5% CHCl3	-361

^{119}Sn Chemical shifts in seven-coordinate and corresponding six-coordinate organotin compounds^a

 \overline{a} Abbreviations for ligands; pan = 1-(2-pyridylazo)-2-naphtholate, acac = acetylacetonate, TPy = 2,2',2''-terpyridyl, DPy = 2,2'-dipyridyl, Ox = oxinate, and dtc = N,N'-dimethyldithiocarbamate.

suggested by its molar conductivity $(0.211 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1} \ \text{at} \ 10^{-4} \ \text{mol} \ \text{l}^{-1})$. While six-coordinate organotin compounds usually have octahedral configuration, the most probable ligand arrangement for seven-coordinate compounds is that of a pentagonal bipyramid with axial Sn—C bonds [2], which have increased s-character as is evident from the large ${}^2J(\text{CH}_3-{}^{119}\text{Sn})$ values. It has been reported that the increase in s-character in Sn—C bonds induces an upfield shift of $\delta({}^{119}\text{Sn})$ values [8].

References

- 1 P.J. Smith and A.P. Tupciauskas, Ann. Rep. NMR Spectroscopy, 8 (1978) 291.
- 2 J.A. Zubieta and J.J. Zuckerman, Prog. Inorg. Chem., 24 (1978) 251.
- 3 Y. Kawasaki and T. Sasaki, Chem. Lett., (1979) 279.
- 4 K. Kawakami, Y. Kawasaki, and R. Okawara, Bull. Chem. Soc. Japan, 40 (1967) 2693.
- 5 J.C. May, D. Petridis, and C. Curran, Inorg. Chim. Acta, 5 (1971) 511.
- 6 J.C. May and C. Curran, J. Organometal. Chem., 39 (1972) 289.
- 7 J.D. Kennedy, W. McFarlane, P.J. Smith, and R.F.M. White, J. Chem. Soc. Perkin II, (1973) 1785.
- 8 P.J. Smith and L. Smith, Inorg. Chim. Acta Rev., 7 (1973) 11.